通常使用 TikZ-Feynman[1] 绘制费曼图[2] axodraw feynMF/feynMP 要容易许多,那俩语法稍微复杂,适合绘制更复杂的费曼图。这里我们需要的场景不用那么麻烦。如果你在论文或书籍里使用了这个宏包,请引用:doi:10.1016/j.cpc.2016.08.019 arXiv:1601.05437

# 配置环境

这里我们使用 VSCode 编辑器配合 MikTeX 搭建我们的 LaTeX\LaTeX 编写环境。

在 VSCode 配置文件 settings.json 中加入:

settings.json
{
  "latex-workshop.latex.tools": [// 编译工具和命令
    {
      "name": "lualatex",
      "command": "lualatex",
      "args": [
        "-synctex=1",
        "-interaction=nonstopmode",
        "-file-line-error",
        "-shell-escape",// 这一项需要谨慎,有可能会运行不安全的代码
        "-output-directory=%OUTDIR%",
        "%DOC%"
      ]
    }
  ],
  "latex-workshop.latex.recipes": [// 用于配置编译链
    {
      "name": "LuaLaTeX",
      "tools": ["lualatex"]
    }
  ]
}

关于我更详细的配置请查看 LaTeX 环境配置

引用 TikZ-Feynman 宏包后请在编译链中再用 LuaLaTeX 编译一次。

lualatex -interaction=nonstopmode -shell-escape main.tex
\usepackage[compat=1.1.0]{tikz-feynman}

使用 compat 选项是为了版本兼容性,如果不使用此项会有警告。这个包最后一次更新是 2016 年[3],还算稳定。

# 示例

遇到问题,查文档(很多人就是不看文档.jpg):

文档是你的好朋友!
texdoc tikz-feynman

# 线的类型

图像类型名称
plain普通直线
boson玻色子线
charged boson带电玻色子线
anti charged boson反带电玻色子线
photon光子线
scalar标量线
charged scalar带电标量线
anti charged scalar反带电标量线
ghost鬼线
fermion费米子线
anti fermion反费米子线
majorana马约拉纳费米子线
anti majorana反马约拉纳费米子线
gluon胶子线

fig:01

\feynmandiagram[horizontal=a to b]{
  i1 -- [fermion] a -- [fermion] i2,
  a -- [photon] b,
  f1 -- [fermion] b -- [fermion] f2,
};
  • \feynmandiagram[]{}; 指令即引入费曼图, horizontal 选项就是指中间 a 点到 b 点是水平线;
  • 路径 i1 -> a -> i2 即指左下角 i1 点到中间 a 点再到左上角 i2 点,线的类型都是费米子线 [fermion]
  • 路径 a -> b 即指中间 a 点水平向右指向中间 b 点,线的类型是光子线 [photon]
  • 路径 f1 -> b -> f2 即指右上角 f1 点到中间 b 点再到右下角 f2 点,线的类型都是费米子线 [fermion]
  • ; 结束费曼图环境。

fig:02

\feynmandiagram[horizontal=f2 to f3]{
  f1 -- [fermion] f2 -- [fermion] f3 -- [fermion] f4,
  f2 -- [photon] p1,
  f3 -- [photon] p2,
};
  • 路径 f1 -> f2 -> f3 -> f4 即指左下角 f1 点到中间 f2 点再到中间 f3 点再到右上角 f4 点,线的类型都是费米子线 [fermion]
  • 路径 f2 -> p1 即指中间 f2 点指向左上角 p1 点,线的类型是光子线 [photon]
  • 路径 f2 -> p1 即指中间 f3 点指向右下角 p2 点,线的类型是光子线 [photon]

fig:03

\feynmandiagram[horizontal=a to b]{
  i1 [particle=$e^{-}$] -- [fermion] a -- [fermion] i2 [particle=$e^{+}$],
  a -- [photon, edge label=$\gamma$, momentum'=$k$] b,
  f1 [particle=$\mu^{+}$] -- [fermion] b -- [fermion] f2 [particle=$\mu^{-}$],
};

fig:04

\feynmandiagram[horizontal=a to b]{
  i1 [particle=$e^{-}$] -- [fermion,very thick] a -- [fermion,opacity=0.2] i2 [particle=$e^{+}$],
  a -- [photon,red,edge label=$\gamma$,momentum'={[arrow style=red]$k$}] b,
  f1 [particle=$\mu^{+}$] -- [fermion,opacity=0.2] b -- [fermion,very thick] f2 [particle=$\mu^{-}$],
};

fig:05

\feynmandiagram[horizontal=a to b]{
  i1 [particle=$\tilde{W}$] -- [plain, boson] a -- [anti fermion] i2 [particle=$q$],
  a -- [charged scalar,edge label=$\tilde{q}$] b,
  f1 [particle=$\tilde{g}$] -- [plain, gluon] b -- [fermion] f2 [particle=$q$],
};

fig:06

\feynmandiagram[horizontal=a to t1]{
  a [particle=$\pi^{0}$] -- [scalar] t1 -- t2 -- t3 -- t1,
  t2 -- [photon] p1 [particle=$\gamma$],
  t3 -- [photon] p2 [particle=$\gamma$],
};

fig:07

\feynmandiagram[horizontal=a to t1]{
  a [particle=$\pi^{0}$] -- [scalar] t1 -- t2 -- t3 -- t1,
  t2 --[photon] p1 [particle=$\gamma$],
  t3 --[photon] p2 [particle=$\gamma$],
  p1 -- [opacity=0.2] p2,
};

fig:08

\feynmandiagram[horizontal=a to b]{
  a [particle=$\mu^{-}$] -- [fermion] b -- [fermion] f1 [particle=$\nu_{\mu}$],
  b -- [boson,edge label=$W^{-}$] c,
  f2 [particle=$\overline{\nu_{e}}$] -- [fermion] c -- [fermion] f3 [particle=$e^{-}$],
};

fig:09

\feynmandiagram[layered layout,horizontal=a to b]{
  a [particle=$\mu^{-}$] -- [fermion] b -- [fermion] f1 [particle=$\nu_{\mu}$],
  b -- [boson,edge label=$W^{-}$] c,
  c -- [anti fermion] f2 [particle=$\overline{\nu_{e}}$],
  c -- [fermion] f3 [particle=$e^{-}$],
};

fig:10

\begin{tikzpicture}
  \begin{feynman}
    \vertex(a) {$\mu^{-}$};
    \vertex[right=of a](b);
    \vertex[above right=of b](f1){$\nu_{\mu}$};
    \vertex[below right=of b](c);
    \vertex[above right=of c](f2){$\overline{\nu_{e}}$};
    \vertex[below right=of c](f3){$e^{-}$};
    \diagram*{
        (a)--[fermion](b)--[fermion](f1),
        (b)--[boson,edge label'=$W^{-}$](c),
        (c)--[anti fermion](f2),
        (c)--[fermion](f3),
    };
  \end{feynman}
\end{tikzpicture}

fig:11

\feynmandiagram[nodes=circle,horizontal=a1 to b3]{
  a1 -- {b1,b2,b3 -- {c1,c2 -- d1}},
};

fig:12

\feynmandiagram[nodes=circle,small,horizontal=a to b,tree layout]{
  a -- b -- {c -- {c1,c2},d -- {d1,d2}},
};

fig:13

\tikzfeynmanset{every feynman={red}}
\begin{center}
\begin{tikzpicture}
  \node at (0,0.5){This is LZU};
  \begin{feynman}
    \node at (0,-0.5){This is LZU};
  \end{feynman}
\end{tikzpicture}

fig:14

\begin{equation}
  \feynmandiagram[inline=(d.base),horizontal=d to b]{
    a -- [fermion] b -- [fermion] c,
    b -- [boson] d [particle=\gamma],
  };
  =ig_{e}\gamma^{\mu}\notag
\end{equation}

fig:15

\begin{equation}
  \feynmandiagram[baseline=(d.base),horizontal=d to b]{
    a -- [fermion] b -- [fermion] c,
    b -- [boson] d [particle=\gamma],
  };
  =ig_{e}\gamma^{\mu}\notag
\end{equation}
\feynmandiagram[inline=(b),horizontal=a to b,red]{
  a [particle=$a$] -- b [particle=$b$] -- {c [particle=$c$], d [particle=$d$]},
};
\feynmandiagram[inline=(b),horizontal'=a to b,blue]{
  a [particle=$a$] -- b [particle=$b$] -- {c [particle=$c$], d [particle=$d$]},
};
\feynmandiagram[inline=(b),vertical=a to b,green!40!black]{
  a [particle=$a$] -- b [particle=$b$] -- {c [particle=$c$], d [particle=$d$]},
};
\feynmandiagram[inline=(b),vertical'=a to b,black]{
  a [particle=$a$] -- b [particle=$b$] -- {c [particle=$c$], d [particle=$d$]},
};
\tikzfeynmanset{every diagram={red}}
\feynmandiagram[small,horizontal=a to b]{
  i1 -- [fermion] a -- [fermion] i2,
  a -- [boson] b,
};
\tikzfeynmanset{every diagram={green}}
\feynmandiagram[medium,horizontal=a to b]{
  i1 -- [fermion] a -- [fermion] i2,
  a -- [boson] b,
};
\tikzfeynmanset{every diagram={blue}}
\feynmandiagram[large,horizontal=a to b]{
  i1 -- [fermion] a -- [fermion] i2,
  a -- [boson] b,
};
\feynmandiagram[nodes=circle,small,horizontal=c to d]{
  {a, b} -- c -- d -- {e, f},
};
\feynmandiagram[nodes=circle,small,horizontal=c to d,spring electrical layout]{
  {a, b [electric charge=2]} -- c -- d -- {e, f [electric charge=0.1]},
};
\feynmandiagram[nodes=circle,small,horizontal=a to b,layered layout]{
  a -- b -- {c -- {c1, c2}, d -- {d1, d2}},
  {[same layer] c1, d}
};
\feynmandiagram[nodes=circle,small,horizontal=a to b,tree layout]{
  a -- b -- {c, d -- {e, f}}
};

fig:19

\tikzfeynmanset{
  every vertex={red,dot},
  every particle={blue},
  every blob={draw=green!40!black, pattern color=green!40!black},
}
\feynmandiagram[horizontal=a to b]{
  a [particle={$\gamma, Z$}] -- [boson] b [blob],
  c -- [fermion] b -- [fermion] d,
};
\feynmandiagram[small]{
  a -- b [dot] -- {c, d},
};
\feynmandiagram[small]{
  a -- b [square dot] -- {c, d},
};
\feynmandiagram[small]{
  a -- b [empty dot] -- {c, d},
};
\feynmandiagram[small]{
  a -- b [crossed dot] -- {c, d},
};
\feynmandiagram[small]{
  a -- b [blob] -- {c, d}
};

fig:21

\tikzfeynmanset{
  every edge={green},
  every boson={red},
  every photon={blue},
}
\feynmandiagram[nodes=circle,small]{
  a -- [boson] o -- [photon] b,
  c -- [fermion] o --[scalar] d,
};

# 其他例子

可以将 PDF 转换成 svg、eps 等矢量图[4]或者 png 位图[5][6][7]

TeX Live 和 MiKTeX 默认集成 Poppler(pdfcrop 和 pdftocairo 就包含其中)

pdfcrop main.pdf && pdftocairo -svg main-crop.pdf # pdf 裁边并转换成 svg
pdf2svg main.pdf main.svg

在以下例子中,使用 standalone 文档类

lualatex -interaction=nonstopmode -shell-escape main.tex

编译出 PDF 文件后自动裁边并转换成 svg 矢量图。

  1. 电子 - 正电子湮灭

电子-正电子湮灭

e+e+γ+γe^{-}+e^{+}\rightarrow\gamma+\gamma

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  % pdf2svg \infile\space \outfile
  pdfcrop \infile\space \infile && pdftocairo -svg \infile % 不喜欢用 pdf2svg
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\feynmandiagram[horizontal=f2 to f3]{
  f1 [particle=$e^{-}$] -- [fermion] f2,
  f2 -- [photon] p1 [particle=$\gamma$],
  f2 -- [fermion] f3,
  f3 -- [photon] p2 [particle=$\gamma$],
  f3 -- [fermion] f4 [particle=$e^{+}$],
};
\end{document}
  1. Rosenbluth formula

Rosenbluth formula

lualatex -interaction=nonstopmode -shell-escape main.tex
pdfcrop main.pdf main.pdf && pdftocairo -svg main.pdf
\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\pagestyle{empty}
\begin{equation}
\tikzfeynmanset{
  every vertex={red},
  every particle={blue},
  every blob={draw=green!40!black, pattern color=green!40!black},
}
\feynmandiagram[inline=(c.base), horizontal=o to c]{
  a -- [fermion, edge label=$p$] o [blob],
  o -- [fermion, edge label=$p^{\prime}$] b,
  c --[boson,momentum={[arrow style=red]$q$}] o,
};
\;=\bar{u}(p^{\prime})\left[\gamma^{\mu}F_1(q^{2})+\frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^{2})\right]u(p)\notag
\end{equation}
\end{document}
  1. 顶点(vertex)规则(rule)

顶点规则

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\feynmandiagram[horizontal=a to b]{
  a [particle=\(Z\)] -- [photon, momentum=\(p_{1}\)] b,
  f1 [particle=\(\overline f\)]
     -- [fermion, rmomentum'=\(p_{3}\)] b
     -- [fermion, momentum=\(p_{2}\)] f2 [particle=\(f\)],
};
\end{document}
  1. 树状(tree-level)(diagrams)

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\feynmandiagram[horizontal=a to b]{
  i1 [particle=\(e^{-}\)] -- [fermion] a -- [fermion] i2 [particle=\(e^{+}\)],
  a -- [photon, edge label=\(\gamma\)] b,
  f1 [particle=\(\mu^{-}\)] -- [fermion] b -- [fermion] f2 [particle=\(\mu^{+}\)],
};
\end{document}

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\feynmandiagram[vertical'=a to b]{
  i1 [particle=\(e^{-}\)]
     -- [fermion] a
     -- [fermion] f1 [particle=\(e^{-}\)],
  a -- [photon, edge label=\(\gamma\)] b,
  i2 [particle=\(e^{+}\)]
     -- [anti fermion] b
     -- [anti fermion] f2 [particle=\(e^{+}\)],
};
\end{document}

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\begin{tikzpicture}
  \begin{feynman}
    \diagram[vertical'=a to b]{
      i1 [particle=\(e^{-}\)]
         -- [fermion] a
         -- [draw=none] f1 [particle=\(e^{+}\)],
      a -- [photon, edge label'=\(p\)] b,
      i2 [particle=\(e^{+}\)]
         -- [anti fermion] b
         -- [draw=none] f2 [particle=\(e^{-}\)],
    };
    \diagram*{
      (a) -- [fermion] (f2),
      (b) -- [anti fermion] (f1),
    };
  \end{feynman}
\end{tikzpicture}
\end{document}

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\feynmandiagram[layered layout,horizontal=a to b]{
  a -- [boson, edge label=$J/\Psi$] b
    -- [plain, very thick, edge label=$N^{*}$] c
    -- [fermion] d [particle=$\Lambda$],
  b -- [fermion] f1 [particle=$\bar{p}$],
  c -- [charged scalar] f2 [particle=$K^{+}$],
};
\end{document}
  1. 循环(loops)

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\feynmandiagram[layered layout, horizontal=b to c]{
  a -- [photon, momentum=\(p\)] b
    -- [fermion, half left, momentum=\(k\)] c
    -- [fermion, half left, momentum=\(k-p\)] b,
  c -- [photon, momentum=\(p\)] d,
};
\end{document}

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\feynmandiagram[layered layout, horizontal=b to c]{
  a -- [photon, momentum=\(p\)] b
    -- [fermion, half left, momentum=\(k\)] c
    -- [fermion, half left, momentum=\(k-p\)] b,
  c -- [photon, momentum=\(p\)] d,
};
\end{document}
  1. 箱形(box)(diagrams)

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\feynmandiagram[layered layout, horizontal=a to b]{
  % 画顶部和底部线
  i1 [particle=\(d\)]
     -- [fermion] a
     -- [photon, edge label=\(W^{-}\)] b
     -- [fermion] f1 [particle=\(\mu^{-}\)],
  i2 [particle=\(\overline s\)]
     -- [anti fermion] c
     -- [photon, edge label'=\(W^{+}\)] d
     -- [anti fermion] f2 [particle=\(\mu^{+}\)],
  % 绘制两条内部费米子线
  { [same layer] a -- [fermion, edge label'=\(q\)] c },
  { [same layer] b -- [anti fermion, edge label=\(\nu_{\mu}\)] d},
};
\end{document}
  1. 介子(meson)衰变(decay)(and)混合(mixing)

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\begin{tikzpicture}
  \begin{feynman}
    \vertex (a1) {\(\overline b\)};
    \vertex[right=1.5cm of a1] (a2);
    \vertex[right=1cm of a2] (a3);
    \vertex[right=1.5cm of a3] (a4) {\(\overline u\)};
    \vertex[below=2em of a1] (b1) {\(d\)};
    \vertex[below=2em of a4] (b2) {\(d\)};
    %% 看第 13.5 节 PGF/TikZ 手册
    \vertex at ($(a2)!0.5!(a3)!0.5cm!90:(a3)$) (d);
    %% 获得 (d) 的等效方法:
    % \vertex at ($(b2)!0.5!(b3) + (0, -0.5cm)$) (d);
    \vertex[above=of a4] (c1) {\(u\)};
    \vertex[above=2em of c1] (c3) {\(\overline d\)};
    \vertex at ($(c1)!0.5!(c3) - (1cm, 0)$) (c2);
    \diagram*{
      (a4) -- [fermion] (a3) -- [fermion] (a2) -- [fermion] (a1),
      (b1) -- [fermion] (b2),
      (c3) -- [fermion, out=180, in=45] (c2) -- [fermion, out=-45, in=180] (c1),
      (a2) -- [boson, quarter left] (d) -- [boson, quarter left] (a3),
      (d) -- [boson, bend left, edge label=\(W^{+}\)] (c2),
    };
    \draw[decoration={brace}, decorate] (b1.south west) -- (a1.north west)
         node [pos=0.5, left] {\(B^{0}\)};
    \draw[decoration={brace}, decorate] (c3.north east) -- (c1.south east)
         node [pos=0.5, right] {\(\pi^{+}\)};
    \draw[decoration={brace}, decorate] (a4.north east) -- (b2.south east)
         node [pos=0.5, right] {\(\pi^{-}\)};
  \end{feynman}
\end{tikzpicture}
\end{document}

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\begin{tikzpicture}
  \begin{feynman}
    \vertex (a1) {\(\overline b\)};
    \vertex[right=1cm of a1] (a2);
    \vertex[right=1cm of a2] (a3);
    \vertex[right=1cm of a3] (a4) {\(b\)};
    \vertex[right=1cm of a4] (a5);
    \vertex[right=2cm of a5] (a6) {\(u\)};
    \vertex[below=2em of a1] (b1) {\(d\)};
    \vertex[right=1cm of b1] (b2);
    \vertex[right=1cm of b2] (b3);
    \vertex[right=1cm of b3] (b4) {\(\overline d\)};
    \vertex[below=2em of a6] (b5) {\(\overline d\)};
    \vertex[above=of a6] (c1) {\(\overline u\)};
    \vertex[above=2em of c1] (c3) {\(d\)};
    \vertex at ($(c1)!0.5!(c3) - (1cm, 0)$) (c2);
    \diagram*{
      {[edges=fermion]
        (b1) -- (b2) -- (a2) -- (a1),
        (b5) -- (b4) -- (b3) -- (a3) -- (a4) -- (a5) -- (a6),
      },
      (a2) -- [boson, edge label=\(W\)] (a3),
      (b2) -- [boson, edge label'=\(W\)] (b3),
      
      (c1) -- [fermion, out=180, in=-45] (c2) -- [fermion, out=45, in=180] (c3),
      (a5) -- [boson, bend left, edge label=\(W^{-}\)] (c2),
    };
    \draw[decoration={brace}, decorate] (b1.south west) -- (a1.north west)
         node [pos=0.5, left] {\(B^{0}\)};
    \draw[decoration={brace}, decorate] (c3.north east) -- (c1.south east)
         node [pos=0.5, right] {\(\pi^{-}\)};
    \draw[decoration={brace}, decorate] (a6.north east) -- (b5.south east)
         node [pos=0.5, right] {\(\pi^{+}\)};
  \end{feynman}
\end{tikzpicture}
\end{document}

\documentclass[margin=5pt, convert, convert={outext=.svg, command=\unexpanded{
  pdfcrop \infile\space \infile && pdftocairo -svg \infile
}}]{standalone}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\begin{tikzpicture}
  \begin{feynman}
    \vertex (a1) {\(\overline b\)};
    \vertex[right=2cm of a1] (a2);
    \vertex[right=0.5cm of a2] (a3);
    \vertex[right=0.5cm of a3] (a4);
    \vertex[right=2cm of a4] (a5) {\(\overline s\)};
    \vertex[below=2cm of a1] (b1) {\(d\)};
    \vertex[below=2cm of a5] (b2) {\(d\)};
    \vertex[below=1.5em of a5] (c1) {\(s\)};
    \vertex[above=1.5em of b2] (c3) {\(\overline s\)};
    \vertex at ($(c1)!0.5!(c3) - (1cm, 0)$) (c2);
    \diagram*{
      {[edges=fermion]
        (a5) -- (a4) -- (a3) -- (a2) -- (a1),
      },
      (b1) -- [fermion] (b2),
      (c3) -- [fermion, out=180, in=-60] (c2) -- [fermion, out=60, in=180] (c1),
      (a3) -- [gluon, bend right] (c2),
      (a4) -- [boson, out=90, in=90, looseness=2.0, edge label'=\(W^{+}\)] (a2)
    };
    \draw[decoration={brace}, decorate] (b1.south west) -- (a1.north west)
         node [pos=0.5, left] {\(B^{0}\)};
    \draw[decoration={brace}, decorate] (a5.north east) -- (c1.south east)
         node [pos=0.5, right] {\(\phi\)};
    \draw[decoration={brace}, decorate] (c3.north east) -- (b2.south east)
         node [pos=0.5, right] {\(K^{0}\)};
  \end{feynman}
\end{tikzpicture}
\end{document}
  1. 三个 gluon 的 interaction vertex

\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage[compat=1.1.0]{tikz-feynman}
\begin{document}
\pagestyle{empty}
\begin{equation}
\feynmandiagram[inline=(a.base), horizontal=a to b]{
  a [particle=$\nu;\;b$] -- [gluon, momentum'=$p$] b,
  c [particle=$\mu;\;a$] -- [gluon, momentum'=$k$] b,
  d [particle=$\rho;\;c$] -- [gluon, momentum'=$q$] b,
};
\;=gf^{abc}\left[g^{\mu\nu}(k-p)^{\rho}+g^{\nu\rho}(p-q)^{\mu}+g^{\rho\mu}(q-k)^{\nu}\right]\notag
\end{equation}
\end{document}

# 参考资料


  1. TikZ-Feynman – Joshua Ellis ↩︎

  2. 如何画费曼图? ↩︎

  3. GitHub ↩︎

  4. 矢量图由 PDF 文件经 Inkscapepdf2svg 制作。 ↩︎

  5. 工具:PDF 处理的一些小技巧 ↩︎

  6. 使用 pdftocairo 工具将 pdf 文件转换为 png 图像 ↩︎

  7. LaTex (tikz) 转换为图像 ↩︎