# 守恒量

在经典力学中,若一个物理量对时间的导数恒为零,则称它为守恒量(有条件的)。例如,保守系统的能量及中心力场中质点的角动量。在量子力学中,根据 Born 的统计解释,我们说一个力学量 A^\hat{A} 在一个量子力学体系中是守恒量,是指对于该体系的任何一个允许态(满足 Schrödinger 方程),我们皆有

ddtψ(t)A^ψ(t)0\frac{\mathrm{d}}{\mathrm{d}t}\braket{\psi(t)\vert\hat{A}\vert\psi(t)}\equiv 0

力学量算符 A^\hat{A} 期望值 Aˉ\bar{A} 对时间的一阶导恒为 0A^0\to\hat{A} 为守恒量。令 dA^dt=0\frac{\mathrm{d}\hat{A}}{\mathrm{d}t}=0 (算符 A^\hat{A} 是一台 “仪器”,“仪器” 对时间的一阶导 dEdt=limΔt0E(t+Δt)E(t)Δt\frac{\mathrm{d}E}{\mathrm{d}t}=\lim\limits_{\Delta t\to 0}\frac{E(t+\Delta t)-E(t)}{\Delta t} 没有定义),任取一允许态 ψ(t)\ket{\psi(t)} ,求算符 A^\hat{A} 作用上的平均值 Aˉ=ψ(t)A^ψ(t)\bar{A}=\braket{\psi(t)\vert\hat{A}\vert\psi(t)}iψt=H^ψψt=1iH^ψi\hbar\frac{\partial\psi}{\partial t}=\hat{H}\psi\implies\frac{\partial\psi}{\partial t}=\frac{1}{i\hbar}\hat{H}\psi

求证 dA^dt=0\frac{\mathrm{d}\hat{A}}{\mathrm{d}t}=0

ddtψ(t)A^ψ(t)=ψ˙(t)A^ψ(t)+ψ(t)dA^dtψ(t)+ψ(t)A^ψ˙(t)=dψdtA^ψ(t)+ψ(t)A^dψdt=1iH^ψ(t)A^ψ(t)+ψ(t)A^1iH^ψ(t)=(1iH^ψ,A^ψ)+(ψ,A^(1iH^ψ))=(1i)(H^ψ,A^ψ)+1i(ψ,A^H^ψ)=1i(H^ψ,A^ψ)+1i(ψ,A^H^ψ)=1i(H^ψ,A^ψ)+1i(ψ,A^H^ψ)=1i(ψ,H^A^ψ)+1i(ψ,A^H^ψ)=1i(ψ,(A^H^H^A^)ψ)=1i(ψ,[A^,H^]ψ)=0\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\braket{\psi(t)\vert\hat{A}\vert\psi(t)}&=\braket{\dot\psi(t)\vert\hat{A}\vert\psi(t)}+\braket{\psi(t)\vert\frac{\mathrm{d}\hat{A}}{\mathrm{d}t}\vert\psi(t)}+\braket{\psi(t)\vert\hat{A}\vert\dot\psi(t)} \\ &=\braket{\frac{\mathrm{d}\psi}{\mathrm{d}t}\vert\hat{A}\vert\psi(t)}+\braket{\psi(t)\vert\hat{A}\vert\frac{\mathrm{d}\psi}{\mathrm{d}t}} \\ &=\braket{\frac{1}{i\hbar}\hat{H}\psi(t)\vert\hat{A}\vert\psi(t)}+\braket{\psi(t)\vert\hat{A}\vert\frac{1}{i\hbar}\hat{H}\psi(t)} \\ &=\left(\frac{1}{i\hbar}\hat{H}\psi,\hat{A}\psi\right)+\left(\psi,\hat{A}\left(\frac{1}{i\hbar}\hat{H}\psi\right)\right)\\ &=\left(\frac{1}{i\hbar}\right)^{*}\left(\hat{H}\psi,\hat{A}\psi\right)+\frac{1}{i\hbar}\left(\psi,\hat{A}\hat{H}\psi\right)\\ &=-\frac{1}{i\hbar}\left(\hat{H}\psi,\hat{A}\psi\right)+\frac{1}{i\hbar}\left(\psi,\hat{A}\hat{H}\psi\right)\\ &=-\frac{1}{i\hbar}\left(\hat{H}^{\dagger}\psi,\hat{A}\psi\right)+\frac{1}{i\hbar}\left(\psi,\hat{A}\hat{H}\psi\right)\\ &=-\frac{1}{i\hbar}\left(\psi,\hat{H}\hat{A}\psi\right)+\frac{1}{i\hbar}\left(\psi,\hat{A}\hat{H}\psi\right)\\ &=\frac{1}{i\hbar}\left(\psi,\left(\hat{A}\hat{H}-\hat{H}\hat{A}\right)\psi\right)\\ &=\frac{1}{i\hbar}\left(\psi,\left[\hat{A},\hat{H}\right]\psi\right)\\ &=0 \end{aligned}

对易子在任何态下的平均值都是 00

++ 如果 [A^,H^]=0\left[\hat{A},\hat{H}\right]=0 (是对易的),则 A^\hat{A} 是守恒量,即 A^\hat{A} 在时间平移变换下不变。++ 我们要求 dA^dt=0\frac{\mathrm{d}\hat{A}}{\mathrm{d}t}=0 ,即 A^\hat{A} 不显含时间;要求 [A^,H^]=0\left[\hat{A},\hat{H}\right]=0 ,即能量和力学量同时可测。换言之,我们应能找到 A^\hat{A}H^\hat{H} 的一组共同本征函数族 {ψnk}\{\psi_{nk}\}

根据测不准原理,如果两个力学量对易,则它们具有一组共同本征函数。

H^ψnk=Enψnk,A^ψnk=λkψnk\hat{H}\psi_{nk}=E_{n}\psi_{nk},\quad \hat{A}\psi_{nk}=\lambda_{k}\psi_{nk}

体系任何一个状态 ψ(t)\psi(t) 都可按 {ψnk}\{\psi_{nk}\} 展开:

ψ(t)=n,kan,k(t)ψnk\psi(t)=\sum_{n,\,k}a_{n,\,k}(t)\psi_{nk}

要证明 ank(t)2|a_{nk}(t)|^2 并不随时间改变,即体系处于 ψnk\psi_{nk} 态的几率是一个守恒量。

ddtank(t)2=ddt[ank(t)ank(t)]=dankdtank+ankdankdt=ddtψnkψ(t)ank+ankddtψnkψ(t)=[ddtψnkψ(t)]ψnkψ(t)+ψnkψ(t)ddtψnkψ(t)=ψ(t)ψnkψnkψ(t)+ψ(t)ψnkψnkψ(t)=1iH^ψψnkψnkψ(t)+ψ(t)ψnkψnk1iH^ψ=1i(H^ψ,ψnk)ψnkψ(t)+ψ(t)ψnk1iψnkH^ψ=1i(H^ψ,ψnk)ψnkψ(t)+ψ(t)ψnk1iψnkH^ψ=1i(ψ,H^ψnk)ψnkψ(t)+ψ(t)ψnk1i(H^ψnk,ψ)=1i(ψ,Enψnk)ψnkψ(t)+ψ(t)ψnk1i(Enψnk,ψ)=1iEn(ψ,ψnk)ψnkψ(t)+ψ(t)ψnk1iEn(ψnk,ψ)=1iEnψ(t)ψnkψnkψ(t)+ψ(t)ψnk1iEnψnkψ(t)=0\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}|a_{nk}(t)|^2&=\frac{\mathrm{d}}{\mathrm{d}t}\left[a_{nk}^{*}(t) a_{nk}(t)\right]\\ &=\frac{\mathrm{d}a_{nk}^{*}}{\mathrm{d}t}a_{nk}+a_{nk}^{*}\frac{\mathrm{d}a_{nk}}{\mathrm{d}t}\\ &=\frac{\mathrm{d}}{\mathrm{d}t}\braket{\psi_{nk}\vert\psi(t)}^{*}a_{nk}+a_{nk}^{*}\frac{\mathrm{d}}{\mathrm{d}t}\braket{\psi_{nk}\vert\psi(t)}\\ &=\left[\frac{\mathrm{d}}{\mathrm{d}t}\braket{\psi_{nk}\vert\psi(t)}^{*}\right]\braket{\psi_{nk}\vert\psi(t)}+\braket{\psi_{nk}\vert\psi(t)}^{*}\frac{\mathrm{d}}{\mathrm{d}t}\braket{\psi_{nk}\vert\psi(t)}\\ &=\braket{\psi^{\prime}(t)\vert\psi_{nk}}\braket{\psi_{nk}\vert\psi(t)}+\braket{\psi(t)\vert\psi_{nk}}\braket{\psi_{nk}\vert\psi^{\prime}(t)}\\ &=\braket{\frac{1}{i\hbar}\hat{H}\psi\vert\psi_{nk}}\braket{\psi_{nk}\vert\psi(t)}+\braket{\psi(t)\vert\psi_{nk}}\braket{\psi_{nk}\vert\frac{1}{i\hbar}\hat{H}\psi}\\ &=-\frac{1}{i\hbar}\left(\hat{H}\psi,\psi_{nk}\right)\braket{\psi_{nk}\vert\psi(t)}+\braket{\psi(t)\vert\psi_{nk}}\frac{1}{i\hbar}\braket{\psi_{nk}\vert\hat{H}\psi}\\ &=-\frac{1}{i\hbar}\left(\hat{H}^{\dagger}\psi,\psi_{nk}\right)\braket{\psi_{nk}\vert\psi(t)}+\braket{\psi(t)\vert\psi_{nk}}\frac{1}{i\hbar}\braket{\psi_{nk}\vert\hat{H}\psi}\\ &=-\frac{1}{i\hbar}\left(\psi,\hat{H}\psi_{nk}\right)\braket{\psi_{nk}\vert\psi(t)}+\braket{\psi(t)\vert\psi_{nk}}\frac{1}{i\hbar}\left(\hat{H}\psi_{nk},\psi\right)\\ &=-\frac{1}{i\hbar}\left(\psi,E_{n}\psi_{nk}\right)\braket{\psi_{nk}\vert\psi(t)}+\braket{\psi(t)\vert\psi_{nk}}\frac{1}{i\hbar}\left(E_{n}\psi_{nk},\psi\right)\\ &=-\frac{1}{i\hbar}E_{n}\left(\psi,\psi_{nk}\right)\braket{\psi_{nk}\vert\psi(t)}+\braket{\psi(t)\vert\psi_{nk}}\frac{1}{i\hbar}E_{n}\left(\psi_{nk},\psi\right)\\ &=-\frac{1}{i\hbar}E_{n}\braket{\psi(t)\vert\psi_{nk}}\braket{\psi_{nk}\vert\psi(t)}+\braket{\psi(t)\vert\psi_{nk}}\frac{1}{i\hbar}E_{n}\braket{\psi_{nk}\vert\psi(t)}\\ &=0 \end{aligned}

ψmlψ=n,kψmlankψnk=n,k(ψml,ankψnk)=n,kank(ψml,ψnk)=n,kankδmlδnk(m=n,l=k)=aml\begin{aligned} \braket{\psi_{ml}\vert\psi}&=\sum_{n,\,k}\braket{\psi_{ml}\vert a_{nk}\psi_{nk}}\\ &=\sum_{n,\,k}\left(\psi_{ml},a_{nk}\psi_{nk}\right)\\ &=\sum_{n,\,k}a_{nk}\left(\psi_{ml},\psi_{nk}\right)\\ &=\sum_{n,\,k}a_{nk}\delta_{ml}\delta_{nk}\quad(m=n,\,l=k)\\ &=a_{ml} \end{aligned}

iψt=H^ψψ=1iH^ψi\hbar \frac{\partial\psi}{\partial t}=\hat{H}\psi\implies\psi^{\prime}=\frac{1}{i\hbar}\hat{H}\psi\,

ddtank(t)2=0\boxed{\frac{\mathrm{d}}{\mathrm{d}t}|a_{nk}(t)|^2=0}

[A^,H^]=0\left[\hat{A},\hat{H}\right]=0 时,A^\hat{A} 被习惯性地称为一个 “好的力学量”(Dirac 称),而其本征值则被称为 “好的量子数”。

例:在氢原子中,电子的哈密顿量为 H^=P^22me2r\hat{H}=\frac{\hat{P}^2}{2m}-\frac{e^2}{r} ,考虑角动量算符 L^=L^xi+L^yj+L^zk\hat{\vec{L}}=\hat{L}_x\vec{i}+\hat{L}_y\vec{j}+\hat{L}_z\vec{k}[L^x,H^]=[L^y,H^]=[L^z,H^]=0\left[\hat{L}_x,\hat{H}\right]=\left[\hat{L}_y,\hat{H}\right]=\left[\hat{L}_z,\hat{H}\right]=0 。验证 [L^x,P^2]=0\left[\hat{L}_x,\hat{P}^2\right]=0[L^x,1r]=0\left[\hat{L}_x,\frac{1}{r}\right]=0

[u^1u^2,v^]=[u^1,v^]u^2+u^1[u^2,v^]\left[\hat{u}_1\hat{u}_2,\hat{v}\right]=\left[\hat{u}_1,\hat{v}\right]\hat{u}_2+\hat{u}_1\left[\hat{u}_2,\hat{v}\right]\,
[u^,v^1v^2]=[u^,v^1]v^2+v^1[u^,v^2]\left[\hat{u},\hat{v}_1\hat{v}_2\right]=\left[\hat{u},\hat{v}_1\right]\hat{v}_2+\hat{v}_1\left[\hat{u},\hat{v}_2\right]\,

[L^x,P^2]=[y^P^zz^P^y,P^x2+P^y2+P^z2]=[y^P^zz^P^y,P^y2+P^z2]=[y^P^z,P^y2]+[y^P^z,P^z2]=0+[z^P^y,P^y2]=0+[z^P^y,P^z2]=[y^,P^y2]P^z+y^[P^z,P^y2]=0[z^,P^z2]P^yz^[P^y,P^z2]=0={[y^,P^y]=iI^P^y+P^y[y^,P^y]=iI^}P^z{[z^,P^z]=iI^P^z+P^z[z^,P^z]=iI^}P^y={iI^P^y+iP^yI^}=2iP^yP^z{iI^P^z+iP^zI^}=2iP^zP^y=2i(P^yP^zP^zP^y)=2i[P^y,P^z]=0\begin{aligned} \left[\hat{L}_x,\hat{P}^2\right]&=\left[\hat{y}\hat{P}_z-\hat{z}\hat{P}_y,\hat{P}_x^2+\hat{P}_y^2+\hat{P}_z^2\right]\\ &=\left[\hat{y}\hat{P}_z-\hat{z}\hat{P}_y,\hat{P}_y^2+\hat{P}_z^2\right]\\ &=\left[\hat{y}\hat{P}_z,\hat{P}_y^2\right]+\underbrace{\left[\hat{y}\hat{P}_z,\hat{P}_z^2\right]}_{=0}+\underbrace{\left[-\hat{z}\hat{P}_y,\hat{P}_y^2\right]}_{=0}+\left[-\hat{z}\hat{P}_y,\hat{P}_z^2\right] \\ &=\left[\hat{y},\hat{P}_y^2\right]\hat{P}_z+\hat{y}\underbrace{\left[\hat{P}_z,\hat{P}_y^2\right]}_{=0}-\left[\hat{z},\hat{P}_z^2\right]\hat{P}_y-\hat{z}\underbrace{\left[\hat{P}_y,\hat{P}_z^2\right]}_{=0} \\ &=\left\{\underbrace{\left[\hat{y},\hat{P}_y\right]}_{=i\hbar\hat{I}}\hat{P}_y+\hat{P}_y\underbrace{\left[\hat{y},\hat{P}_y\right]}_{=i\hbar\hat{I}}\right\}\hat{P}_z-\left\{\underbrace{\left[\hat{z},\hat{P}_z\right]}_{=i\hbar\hat{I}}\hat{P}_z+\hat{P}_z\underbrace{\left[\hat{z},\hat{P}_z\right]}_{=i\hbar\hat{I}}\right\}\hat{P}_y \\ &=\underbrace{\left\{i\hbar\hat{I}\hat{P}_y+i\hbar\hat{P}_y\hat{I}\right\}}_{=2i\hbar\hat{P}_y}\hat{P}_z-\underbrace{\left\{i\hbar\hat{I}\hat{P}_z+i\hbar\hat{P}_z\hat{I}\right\}}_{=2i\hbar\hat{P}_z}\hat{P}_y\\ &=2i\hbar\left(\hat{P}_y\hat{P}_z-\hat{P}_z\hat{P}_y\right)\\ &=2i\hbar\left[\hat{P}_y,\hat{P}_z\right]\\ &=0 \end{aligned}

[L^x,1r]=[y^P^zP^zy^,1x2+y2+z2]\left[\hat{L}_x,\frac{1}{r}\right]=\left[\hat{y}\hat{P}_z-\hat{P}_z\hat{y},\frac{1}{\sqrt{x^2+y^2+z^2}}\right] ,考虑 1r\frac{1}{r} 中,yyzz 是对称的,则左式为 00,另一方面 [P^,1r]=i1r0\left[\hat{P},\frac{1}{r}\right]=\frac{\hbar}{i}\nabla\frac{1}{r}\neq 0

在中心力场中,角动量是一个守恒量,动量却不是一个守恒量。

# 守恒量与对称性的关系

Noether 定理(经典力学):
一个给定的力学体系的守恒量是由该体系的对称性决定的。

  1. 空间平移不变性 \implies 总动量守恒
  2. 时间平移不变性 \implies 总能量守恒
  3. 转动对称性(各向同性) \implies 总角动量守恒
  4. 镜像对称 \implies 宇称守恒

诺特,哥廷根数学学派 {}

# 全同粒子体系与波函数的交换对称性

# 参考资料